Monday, June 3, 2019

Synthesising Benzocaine via Reflux with a Condenser

Synthesising ethyl aminobenzoate via Reflux with a CondenserSynthesis and line drawing of benzocaine experiment practical reportAim The experiment was to synthesise benzocaine via reflux with a condenser and was characterised by examining at the infra-red spectrum and chemic shifts of NMR. cosmos Benzocaine belongs to a collection of medication identified as local anaesthetics and generally consumed as a topical pain reliever. Its mechanism of action is to preclude nerve conduction when applied locally in appropriate concentration to nerve tissues. The main benefit of local anaesthetics is that it does not cause unconsciousness to the enduring and its action could be reversible. The use of local anaesthetics presents complete tissue recovery with no permanent damage.The intention of the experiment was to synthesise benzocaine, an ester, from 4-aminobenzoic blistery, a carboxylic demigod, by Fischer Esterification. The mechanism in figure 1 was to combined 4-aminobenzoic acid an d ethanol in a reflux reaction with the addition of sulphuric acid as a catalyst to p poleuce the product.Figure 1Method In week one of the experiment, 4-aminobenzoic acid (3.0g), methylated spirits (20cm3) and concentrated sulphuric acid (3.0ml) was added to a dry round bottom flask (100cm3). A condenser was then placed onto the flask. Next, the mixture was placed on a heating cortex and the reflux reaction was carried out for thirty minutes. Afterwards, the reaction mixture was cooled down to room temperature and the condenser was removed. The mixture was gently stirred with a glass rod while sodium hydroxide solution 20 % (20cm3) was added slowly until the mixture has reached neutral using strips of pH paper. Subsequently, pour the contents into a beaker containing 70cm3 of ice and dust the flask with fresh distilled water into the beaker until the capacity is 150cm3. A Buchner funnel was then used in vacuum filtration to isolate the product. Lastly the product was transferred to a see to it glass and dried in the oven for 15 minutes. In week two the experiment was repeated, conversely, isopropyl alcohol was used instead of methylated spirits.ResultsPercentage homecoming = (Actual Yield / Theoretical Yield) x 1001st weeks dowry yieldC7H7NO2= 127 + 7 + 14 + 32= 137g/ jettyC2H5OH= 24 + 5 + 16 + 1= 46 g/molC9H11NO2= 108 + 11 + 14 + 32 = 165g/mol1st step 3g divide 137 g/mol = 0.0219mol limiting reagentsecond step 0.789g/ml of methylated spirit x 20ml (used) = 15.78g3rd step 15.78g divide 46g/mol = 0.343mol4th step 0.0219mol x 165g/mol = 3.6135g supposed potentiometer of benzocaineFirst weeks product chain reactor (benzocaine) 2.28gramsPercentage yield 2.28g/3.6135g= 0.63 x 100 = 63%2nd weeks voice yieldC7H7NO2= 127 + 7 + 14 + 32 = 137g/molC2H5OH= 24 + 5 + 16 + 1= 46g/molC10H13NO2= 179g/mol1st step 3g divide 137g/mol= 0.0219mol limiting reagent2nd step 0.786g/ml of Isopropyl alcohol x 20ml (used) = 15.72g3rd step 15.72g divide 46g/mol = 0.342mol4th s tep 0.0219mol x 179g/mol = 3.92g theoretical mass of Isopropyl 4-aminobenzoateSecond weeks product mass (Isopropyl 4-aminobenzoate) 0.29gramsPercentage yield 0.29g/3.92g= 7.4%Ethyl 4-aminobenzoate (benzocaine) first weeks productExperiment warming point 92-96 degrees CelsiusReference melting point 80-90 degrees CelsiusIsopropyl 4-aminobenzoate second weeks productExperiment melting point 83-85 degrees CelsiusReference melting point 84 degrees Celsius13Carbon-NMR4-aminobenzoic acidBenzocaineH-NMR4-aminobenzoic acidBenzocaineInfrared Analysis(Benzocaine) Week 1 product(Isopropyl 4-aminobenzoate) Week 2 productDEPT-135 NMR4-aminobenzoic acidBenzocaineDiscussion of resultsIn the experiment, the final appearance of both products appears to be crystalline like powders after drying them in the oven. The first product (benzocaine) melting point appears to be 92-96 degrees Celsius and compare to the theoretical shelter, it was considered high. Conversely, the second product (isopropyl 4-am inobenzoic acid) melting point was 83-85 degrees Celsius and compare to the theoretical value, it was within the range. Due to the fact that the first product has a higher(prenominal)(prenominal) melting point, it is considered that sample was heated as well fast using the heating apparatus or the period the product was in the oven may have been too short thereforeexcess water are trapped in the product causing extra hydrogen bonding in the molecule, hence higher energy was needed to break the bonds. Melting point accuracy depicts purity of the product therefore the shorter the range of melting point implies a productive synthesis.Furthermore, the mass was obtained as the actual yield from benzocaine and isopropyl 4-aminobenzoate to calculate the percentage yield. The theoretical yield of benzocaine was 3.6135grams and the mass obtained in the experiment was 2.28grams, giving a percentage yield of 63 %. This is a high percentage yield, representing a productive synthesis. Conversely , in the second experiment the theoretical yield was 3.92 grams and the mass obtained in the experiment was 0.29grams, giving a percentage yield of 7.4 %. This is a relatively low yield, representing a poor synthesis. This failure synthesis may have been cod to several(prenominal) errors including inaccurate instrumental handling techniques, loss of product due to several transferences, inaccurate measurement of resources, and not scraping the entire product out of the Buchner funnel.(4-aminobenzoic acid) (Benzocaine)In H-NMR, 4-aminobenzoic acid and benzocaine was identified. By looking at 4-aminobenzoic acid, there were 5 unambiguous peaks representing 5 distinct proton atmospheres available in the molecule. However the coordinate of benzocaine, the H-NMR identifies 6 distinct peaks representing 6 distinct proton atmospheres. By observing the peaks in the both molecules, similar singlet peaks were found. The singlet peak for 4-aminobenzoic acid was 5.7747ppm and benzocaine was 4.0609ppm.Both singlet groups were considered aminoalkane groups since the 2 hydrogen connected to the nitrogen (pink) creates the same environment therefore only 1 peak was found.In both molecules, the amine group is considered as an electron donating group since it shields the hydrogen on the adjacent carbons (blue) in the aromatic ring. This shielding causes the hydrogen on the adjacent carbons (blue) to have a lower chemical shift in the spectrum than the hydrogen on the other carbons (red) in the aromatic ring. Furthermore, the hydrogen on the other carbons (red) has a higher chemical shift due to the close distance with the carbonyl group. The carbonyl group is electronegative therefore shifting them at a lower magnetic field.There is a distinct peak appeared in 4-aminobenzoic acid spectrum, showing a chemical shift of 12 ppm which is considered to be part of the hydrogen of the COOH (light blue).As benzocaine has a long-acting chain compared to 4-aminobenzoic acid, further observation was needed. In benzocaine a peak was found at close to 4.2907ppm-4.3441ppm and has a splitting pattern of four. A quartet shows that it had 3 adjacent hydrogen atoms therefore it is related to CH2 (green). Furthermore, another peak was found at about 1.3447ppm-1.3804ppm and has a splitting pattern of ternion. A triplet shows that it had 2 adjacent hydrogen atoms therefore it is related to CH3. Since the carbon of CH2 is closer to the oxygen comparing to CH3 therefore it is more de-shielded causing it to be found at a lower magnetic field. Lastly, there were distinct peaks seen in the spectrum for solvent in benzocaine and 4-aminobenzoic acid. In 4-aminobenzoic acid H-NMR, a peak was found at about 2.4630ppm-2.4676ppm and was found to be the solvent DMSO. In benzocaine, a singlet peak was found at 7.2626pm and was found to be the solvent chloroform.In 13Carbon-NMR, the 4-aminobenzoic acid spectrum has 5 peaks representing 5 distinct carbon atmospheres and benzocaine ha s 7 peaks representing 7 distinct carbon atmospheres. The peaks are at about 165ppm-168ppm for both molecules represents the happening of the carbonyl group (C=O). Furthermore, the solvents were seen on both spectrums. One of 4-aminobenzoic acids peaks was at 40.1326ppm which represents DMSO, and benzocaines peak was at 77.1052 which represent Chloroform.In the DEPT-135 NMR (Distortionless sweetening by Polarisation Transfer), it only exemplifies the occurrence between three kinds of carbon groups, (-CH), (-CH2) and (-CH3). (-CH) and (-CH3) carbons are identified through the positive peaks whereas (-CH2) is identified through the negative peaks on the spectrum. By looking at the 4-aminobenzoic acid spectrum, there are two positive peaks representing those are either (-CH) or (-CH3) carbon groups. In the benzocaine spectrum, the occurrence of (-CH) and (-CH3) carbon groups was identified via the positive peaks. However a negative peak was also identified representing a (-CH2) carbo n group has occurred in the spectrum.The Infrared spectrum analysis is useful for analysing the occurrence of different functional groups of the chemical structures such as benzocaine and isopropyl 4-aminobenzoate. By analysing both products, absorption peaks at about 3361cm-1-3457cm-1 on the spectrum were seen at both products. It was considered that the occurrence of the amine group (N-H) was located at the region. Furthermore looking at the structures of both products, the amine group was connected to carbon with the peaks at about 1308.72cm-1-1365.61cm-1 of the spectrum, which represents a C-N bond found in aromatic amine groups. Additionally, looking at the absorption peaks at about 1441.17cm-1-1441.98cm-1 between the two products, it is considered as the aromatic ring (benzene).Moving through the benzene ring, the spectrum shows the occurrence of the carbonyl group (C=O) that is part of ester group in both products. The absorption peaks measured was about 2824.37cm-1-2983.54c m-1. The carbonyl group of two products were also connected with a C-O bond which is part of the ester group. The peaks measured were 1167.10cm-1-1168.85cm-1 in both products.ConclusionThis experiment was considered failure in terms of the weight of the products. It is time-dependent to obtain more accurate yields and handling techniques. Although the melting points were not varied critically, the first product (benzocaine) was not able to achieve a pure product due to high melting point. Although this experiment was considered failure, we still achieved to synthesize 4-aminobenzoic acid to benzocaine and its derivative (isopropyl 4-aminobenzoic acid).Why do you think the pH of 8 cannot be exceeded in this experiment?In the experiment, the reactants carboxylic acid (4-aminobenzoic acid) and ethanol were used to synthesize esters (benzocaine, isopropyl 4-aminobenzoic acid) and water molecules as leaving group. The Fischer Esterification reaction chiefly functions at pH less than 8. However, increasing the alkalinity atmosphere in this experiment implies the occurrence of additional OH (hydroxide ions) in the reaction. The additional hydroxide ions could cause the reaction to reverse, fashioning the reactants to be more favourable and fewer products will be form. As mentioned, Fischer Esterification usually functions at pH less than 8. However, increasing the alkalinity environment would cause the reaction saponification to dominate since the reaction is reversed.How do you expect the Rf value if you have been asked to the synthesize the butyl and pentyl derivatives?By synthesizing the butyl and pentyl derivatives the Rf value would differ since the polarity with the molecular structure is different. I assumed that the butyl and pentyl derivatives that were made could cause Rf value decreases as the alkyl chain increases. As the chain increases the polarity drops therefore the Rf value decreases.ReferenceR. Milnard. The preparation of the local Anesthetic, Ben zocaine, by an Esterification Reaction Internet. 2006 updated 2006 October 18 cited 2014 March 7. Available from http//courses.chem.psu.edu/chem36/SynFa06Web/Expt86.pdfCerner Multum Inc. Benzocaine Topical Internet. 2013 updated 2013 May 15 cited 2014 March 7. Available from http//www.everydayhealth.com/drugs/benzocaine-topicalClark Jim. construe C-13 NMR Spectra? Internet. 2007 updated 2007 cited 2014 March 7. Available from http//www.chemguide.co.uk/analysis/nmr/interpretc13.htmlClark Jim. The mechanism for the esterification reaction Internet. 2002 updated 2004 cited 2014 March 7. Available from http//www.chemguide.co.uk/physical/catalysis/esterify.html

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.